1997 Proceedings
1997 Photos
|
Stereoscopic Displays and Virtual Reality Systems IV (1997)
Combined Proceedings of the two conferences:
Stereoscopic Displays and Applications VIII and The Engineering Reality of Virtual Reality IV
CONTENTS
ix | Conference Committees |
xi | Introduction
|
Part A | Stereoscopic Displays and Applications VIII
|
SESSION 1 | Human Factors and Evaluation of Stereoscopic Displays |
4 | How hyperstereopsis can improve the accuracy of spatial perception: an experimental approach,
D. E. Sipes, Johns Hopkins Univ.; V. G. CuQlock- Knopp, Army Research Lab.; W. Torgerson, Johns Hopkins Univ.; J. O. Merritt, Interactive Technologies |
7 | Comparison of a new glasses-free three-dimensional screen, a passive-glasses three-dimensional screen, and a two-dimensional
imaging system for use in laparoscopic surgery,
P. Salimpour, C. A. Kim, W. LaMorte, Boston Univ. Medical Ctr.; D. H. Birkett, Lahey
Hitchcock Clinic; R. K. Babayan, Boston Univ. Medical Ctr. |
16 | Autostereoscopic display for radiotherapy planning,
R. J. Hubbold, D. J. Hancock, Univ. of Manchester (UK); C. J. Moore, Christie Hospital
(UK) |
28 | Stereoscopic display using multimedia and deep sense test,
J. Wang, Z. Zhang, P. Jia, Z. Ye, Tsinghua Univ. (China) |
36 | Stereoscopic layout of a perspective flight guidance display,
M. Hammer, S. K. MŸcke, U. Mayer, Technische Hochschule Darmstadt
(FRG) |
48 | Evaluation of an autostereoscopic display for telerobotic operations, B. Lee, Oceaneering Space Systems;
M. E. Katafiaz, Dimension
Technologies Inc. |
59 | Printed circuit board visual inspection performance: a comparative analysis of mono- and stereovision macroscopic views,
S. F. Wiker, K.
Stewart, T. Meyers, P. Spielholz, Univ. of Washington |
SESSION 2 | Stereoscopic Camera Systems |
72 | Time-multiplexed autostereoscopic camera system,
N. A. Dodgson, J. R. Moore, S. R. Lang, Univ. of Cambridge (UK) |
84 | Stereoscopic camera system for live action and sports productions,
C. Adkins, 3DP Multidimensional Media |
92 | Development of a compact underwater stereoscopic video camera,
A. J. Woods, J. Penrose, Curtin Univ. of Technology (Australia); D.
Clark, Tritech Consultants (Australia) |
96 | Sliding aperture multiview 3D camera-projector system and its application for 3D image transmission and IR to visible conversion,
J.-Y.
Son, Korea Institute of Science and Technology (Korea); S. A. Shestak, Research and Development Institute of Radiooptics (Russia); V. G.
Komar, Cinema and Photo Research Institute (Russia) |
SESSION 3 | Stereoscopic Image Generation |
108 | Conversion system of monocular image sequences to stereo using motion parallax,
Y. Matsumoto, H. Terasaki, K. Sugimoto, T. Arakawa,
Sanyo Electric Co., Ltd. (Japan) |
116 | Shape initialization of 3D objects in videoconference scenes,
T. B. Riegel, Siemens AG (FRG); E. Chappuis, EURECOM (Switzerland) |
125 | Parallax engine: a display generation architecture for motion parallax and stereoscopic display effects,
R. M. Broemmelsiek, Spin Logic |
135 | Stereoscopic 3D graphics generation,
Z. Li, J. Liu, National University of Defence Technology (China); Y. Zan, BACC (China). |
SESSION 4 | Autostereoscopic Displays |
140 | Stereoscopic projection display using curved directional reflection screen,
T. Ohshima, O. Komoda, Y. Kaneko, A. Arimoto, Hitachi Central
Research Lab. (Japan) |
145 | Retroreflective screens and their application to autostereoscopic displays,
P. V. Harman, Xenotech Research Pty. Ltd. (Australia)
|
154 | Hologram-like video images by 45-view stereoscopic display,
Y. Kajiki, Telecommunications Advancement Organization of Japan; H.
Yoshikawa, Nihon Univ. and Telecommunications Advancement Organization of Japan; T. Honda, Chiba Univ. and Telecommunications
Advancement Organization of Japan |
167 | Developments in autostereoscopic displays using holographic optical elements,
D. J. Trayner, E. Orr, Richmond Holographic Studios Ltd.
(UK) |
175 | Three-dimensional image technique with a grating plate on high-resolution CRT,
T. Shiroishi, T. Nakagawa, S. Nakata, K. Nishimura,
Mitsubishi Electric Corp. (Japan) |
179 | Characterization and optimization of 3D-LCD module design,
C. van Berkel, J. A. Clarke, Philips Research Labs. (UK) |
187 | Observer tracking autostereoscopic 3D display systems,
D. Ezra, G. J. Woodgate, N. S. Holliman, R. R. Moseley, J. Harrold, G. R. Jones,
Sharp Labs. of Europe Ltd. (UK) |
199 | Research of 3D display using anamorphic optics, K. Matsumoto, Telecommunications Advancement Organization of Japan;
T. Honda,
Chiba Univ. and Telecommunications Advancement Organization of Japan |
208 | Development of 3DTV: an autostereoscopic video display (Invited Paper),
S. P. Hines, HinesLab. Inc. |
SESSION 5 | Stereoscopic Image Formats and Compression Methods |
222 | Compression of full-parallax integral 3D TV image data,
M. C. Forman, A. Aggoun, De Montfort Univ. (UK) |
227 | Compression and interpolation of 3D stereoscopic and multiview video,
M. W. Siegel, S. Sethuraman, Carnegie Mellon Univ.; J. S.
McVeigh, Intel Corp.; A. G. Jordan, Carnegie Mellon Univ. |
239 | Stereovision formats for video and computer graphics,
L. Lipton, StereoGraphics Corp. |
SESSION 6 | New Developments in Stereoscopic Displays |
246 | Full-color 3D prints and transparencies (Invited Paper),
J. J. Scarpetti, R. M. Friedhoff, P. M. DuBois, V. K. Walworth, Rowland Institute
For Science |
252 | New color anaglyph method,
T. Hattori, Nagoya Univ. School of Medicine and Terumo Corp. (Japan); E. Arita, T. Nakamura, M. Kurio, S.
Sakuma, Terumo Corp. (Japan) |
256 | Focus distance controlled 3D television,
N. Yanagisawa, M. Kidachi, Toyo Univ. (Japan) |
262 | Emitting diagram control method for solid objects 3D display,
J.-Y. Son, Korea Institute of Science and Technology (Korea); S. A. Shestak,
Research and Development Institute of Radiooptics (Russia); K.-T. Kim, Han Nam Univ. (Korea) |
SESSION 7 | Applications of Stereoscopic Displays |
274 | Lightweight, compact 2D/3D autostereoscopic LCD backlight for games, monitor, and notebook applications,
J. Eichenlaub, Dimension Technologies Inc. |
282 | Real-depth imaging: a new 3D imaging technology with inexpensive direct-view (no glasses) video and other applications,
E. Dolgoff,
Floating Images, Inc. |
289 | Role of stereoscopic imaging in the astronomical study of nearby stars and planetary systems,
D. S. Mark, Space Age Design Engineering |
297 | Two stereoscopic experiments: a 3D moviemap and a 3D panorama (Invited Paper),
M. Naimark, Interval Research |
SESSION 8 | Poster Presentations |
308 | Task-dependent use of binocular disparity and motion parallax information within telepresence and quasi-natural environments,
A. Parton, M. Bradshaw, J. R. Pretlove, B. De Bruyn, I. R. Davies, Univ. of Surrey (UK) |
319 | Effects of image resolution on depth perception in stereo and nonstereo images,
K. Jaeae-Aro, L. Kjelldahl, Royal Institute of
Technology (Sweden) |
327 | Stereo panoptic 360o camera,
M. J. Dusariez, KAPWA Foundation (Belgium) |
330 | Ray space representation for 3D image processing,
T. Fujii, T. Kimoto, M. Tanimoto, Nagoya Univ. (Japan) |
337 | Spatial light modulator based three-dimensional multiplanar display,
M. A. Neil, E. G. Paige, L. O. Sucharov, Univ. of Oxford (UK) |
342 | Usefulness of observer-controlled camera angle in telepresence systems depends on the nature of the task: passive perceptual
judgments compared to perceptual-motor performance,
J. W. Huber, Roehampton Institute (UK); I. R. Davies, Univ. of Surrey
(UK) |
353 | Directional display,
H. Lennerstad, Univ. of Karlskrona/Ronneby (Sweden)
|
Part B | The Engineering Reality of Virtual Reality IV
|
SESSION 9 | Creation and Evaluation of Virtual Environments
|
362 | MARTI: man-machine animation real-time interface,
C. M. Jones, S. S. Dlay, Univ. of Newcastle upon Tyne (UK) |
374 | Realistic image generation using model-driven processing in an interactive system,
T. Miyagi, A. Hori, H. Sugama, Y. Murao, Shibaura
Institute of Technology (Japan); H. Enomoto, Tokyo Institute of Technology (Japan) |
389 | ROSE: the road simulation environment,
P. Mitronikas, P. Liatsis, Univ. of Manchester Institute of Science and Technology (UK) |
400 | Body sway induced by 3D images,
M. Hoshino, M. Takahashi, Sanyo Electric Co., Ltd. (Japan); M. Ohmi, T. Yoshizawa, Kanazawa
Institute of Technology (Japan) |
408 | Evaluating an immersive virtual environment prototyping and simulation system,
K. Nemire, Interface Technologies Corp. |
SESSION 10 | Immersive Displays
|
418 | Compact and wide-field-of-view binocular head-mounted display,
S. Uchiyama, H. Kamakura, J. Karasawa, Y. Itoh, M. Sakaguchi, T.
Furihata, N. Okamoto, Seiko Epson Corp. (Japan) |
429 | Virtual model displays (VMD),
M. T. Bolas, Fakespace Inc. |
439 | Next generation of 3D-desktop computer interface,
R. Skerjanc, Heinrich-Hertz-Institut for Nachrichtentechnik GmbH (FRG) |
448 | Controlling graphic objects naturally: use your head,
R. A. Browse, J. C. Rodger, Queen's Univ. (Canada); I. Sewell, Newbridge Networks
Corp. (Canada) |
454 | Let's move on the integration of motion rendering in VR,
U. Jakob, E. Douloumi, Technische Univ. Darmstadt (FRG) |
SESSION 11 | Augmented Reality/Medical Applications
|
462 | Using opera lighting to fuse video images with geometric models in virtual environments for Mars rover control,
G. Thomas, University of Iowa; T. Blackmon, University of California/Berkeley; M. Sims, D. Rassmussen, NASA Ames Research Ctr. |
472 | Augmented reality using range images,
C. Schutz, H. Hugli, Univ. of Neuchatel (Switzerland) |
479 | Haptic display for the VR arthroscopic training simulator,
R. Ziegler, C. Brandt, C. Kunstmann, Technische Univ. Darmstadt (FRG) |
487 | VERS: a virtual environment for reconstructive surgery planning,
K. N. Montgomery, Sterling Software, Inc. |
SESSION 12 | Viewpoints on VR
|
494 | Mediated presence: context and sense-ability in digital worlds,
S. S. Fisher, Telepresence Research, Inc. |
498 | Circulating images of virtual systems: trodes, gloves, and goggles in scientific and popular cultures (Invited Paper),
M. Ito, S. S. Fisher,
Telepresence Research, Inc.
|
503 | Addendum |
505 | Author Index |
|